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Barrier islands are ubiquitous coastal features that create low-
energy environments where salt marshes, oyster reefs, and man-
groves can develop and survive external stresses. Barrier systems
also protect interior coastal communities from storm surges and
wave-driven erosion. These functions depend on the existence of
a slowly migrating, vertically stable barrier, a condition tied to
the frequency of storm-driven overwashes and thus barrier ele-
vation during the storm impact. The balance between erosional
and accretional processes behind barrier dynamics is stochastic in
nature and cannot be properly understood with traditional con-
tinuous models. Here we develop a master equation describing
the stochastic dynamics of the probability density function (PDF)
of barrier elevation at a point. The dynamics are controlled by
two dimensionless numbers relating the average intensity and
frequency of high-water events (HWEs) to the maximum dune
height and dune formation time, which are in turn a function of
the rate of sea level rise, sand availability, and stress of the plant
ecosystem anchoring dune formation. Depending on the control
parameters, the transient solution converges toward a high-
elevation barrier, a low-elevation barrier, or a mixed, bimodal,
state. We find the average after-storm recovery time—a relax-
ation time characterizing barrier’s resiliency to storm impacts—
changes rapidly with the control parameters, suggesting a tip-
ping point in barrier response to external drivers. We finally
derive explicit expressions for the overwash probability and aver-
age overwash frequency and transport rate characterizing the
landward migration of barriers.

Barrier islands | stochastic dynamics | coastal dunes | master equation

Barrier island elevation is determined by the competition
between the formation of vegetated dunes or foredunes

(the highest natural feature on a barrier) and random water-
driven erosional events (Fig. 1A). Vegetated dunes form when
plants trap wind-blown sand and their growth thus depends
on the establishment of a dune-building plant ecosystem, the
availability of fine sand, and the presence of a dry beach
(1). Fast-growing dunes can recover before the next storm or
high-water event (HWE) hits the island, in which case islands
will tend to have well-developed dunes, resist storm impacts,
migrate slowly (if at all), and support a rich ecosystem and/or
human development. In contrast, slow-growing dunes can be fre-
quently eroded, which keeps island elevation low and prone to
frequent overwash, resulting in rapid landward migration and
low biodiversity. These two extreme cases can be associated
with high-elevation and low-elevation barrier states, respectively
(2) (Fig. 1A).

HWEs—defined by clusters of total water levels above a given
threshold elevation—can be divided into two broad groups based
on the relation between maximum total water level, beach ele-
vation, and the height of mature dunes (3). The first group
consists of interannual high-intensity events (e.g., large storms)
overtopping and potentially eroding mature dunes. The second
group consists of intraannual low-intensity events flooding the
beach, which can disrupt after-storm dune recovery when barrier
elevation is low (Fig. 1A).

Recent measurements of the stochastic properties of intraan-
nual HWEs in several locations around the globe, reported in
a companion study in PNAS (3), show they can be modeled as

a marked Poisson process with exponentially distributed marks.
The mark of a HWE is defined as the maximum water level
above the beach during the duration of the event and charac-
terizes its size and intensity. This result opens the way for a
probabilistic model of the temporal evolution of the barrier/dune
elevation, along the lines of the stochastic model of soil moisture
dynamics (4). The knowledge of the transient probability dis-
tribution function of barrier elevation allows the calculation of
after-storm recovery times, overwash probability and frequency,
and the average overwash transport rate driving the landward
migration of barriers.

Master Equation for Barrier Elevation
In general, the barrier elevation z at a point (x , y) is a func-
tion of the cross-shore x and along-shore y position (Fig. 1B)
and its temporal evolution has to be calculated with complex
eco-morphodynamic models (1, 2). In what follows, we propose
several approximations to reduce this complex two-dimensional
problem to a point (zero-dimensional) description.

Following ref. 1, we assume dunes form at a given cross-shore
location xc(y), dictated by where vegetation can survive long
enough to form a dune. Since this location is also the position of
the dune crest (1), the highest point of a barrier island at a given
along-shore position y can be represented by the dune height
h(y , t) = z (xc , y , t) (Fig. 1B). For simplicity, we consider dune
elevation relative to a washover fan (i.e., a bare low-elevation
area), such that the condition h = 0 represents the absence of a
dune and thus the outcome of an overwash.

Numerical simulations (1) and field measurements (5) show
dune growth in the absence of wave overtopping has a char-
acteristic time Td and saturates at a maximum dune height H
(for a steady shoreline). The dune growth rate (ρ) can thus be
approximated by
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Fig. 1. (A) Simplified dynamics of barrier elevation. Extreme HWEs, i.e., large storms, erode the mature dunes that define a high-elevation barrier, along
with the dune-building vegetation; whereas frequent low-intensity HWEs disrupt after-storm dune recovery and keep the island in a low-elevation bare
state. Sand supply increases dune growth and promotes a high-elevation state. Sea level rise promotes a low barrier by increasing plant stress and reducing
the availability of dry sand. Examples of high and low barriers are from Virginia. (B) Geometrical description of coastal dunes where xc is the cross-shore
position of dune crest h. Image is from Cedar Lakes, TX.

dh/dt ≡ ρ(h) = (H − h)/Td . [1]

The undisturbed dune growth after an overwash (h(0) = 0) thus
follows the curve h(t) =H

(
1− e−t/Td

)
. In a first approxima-

tion we neglect the complexities of vegetation dynamics during
the recolonization of the washover fan (2, 5) and consider the
initial plant establishment is much faster than the ensuing dune
growth. The implications of this assumption are explored in
Discussion and Conclusions.

The along-shore profile of barrier elevation is assumed to
consist of different random realizations of the stochastic dune
elevation h(t) at a point. These dynamics are the result of
dune-forming processes, characterized by the continuous wind-
driven deposition rate ρ(h) that increases dune size by dh in a
time interval dt (Eq. 1), and random erosional HWEs decreas-
ing dune size by an amount ∆h > 0 when an event i occurs at
time t = ti ,

dh = ρ(h)dt −∆h(h, t). [2]

We model HWEs as a marked Poisson process with frequency λ0

and exponentially distributed sizes (“marks”) S above the beach
(3). Consistent with our point description, we neglect horizontal
dune erosion—which could be relevant in determining the out-
come during long or closely spaced storms—and assume dune
height remains unchanged if no significant overtopping occurs
(S < rh), whereas the dune is completely eroded otherwise (S >
rh), with overwash parameter r between 1 and 2 (6). This is
consistent with semiempirical models of dune erosion (2) and
represents a sensible idealization of both field data (6) and con-
ceptual storm impact scales for barrier islands (7). For simplicity
in the nomenclature, in what follows we refer to any significant
overtopping event (S > rh) as an overwash event, even for negli-
gible dune height (h ∼ 0) where the term flooding could be more
appropriate.

The stochastic erosional dynamics can be included into a
Chapman–Kolmogorov forward equation for the evolution of the
probability density function (PDF) of barrier elevation f (h, t)
(Materials and Methods). After rescaling dune height by H and
time by Td , the master equation for h > 0 reads

∂f

∂t
=− ∂

∂ξ
[ρ+(ξ)f (ξ, t)]−λ+(ξ)f (ξ, t), [3]

where ξ= h/H is the rescaled dune height, ρ+(ξ) = 1− ξ is
the rescaled dune growth rate (Eq. 1), and the term λ+(ξ) =

λ+
0 e
−ξ/ξc , with ξc = S̄/(rH ) and λ+

0 =λ0Td , represents the
rescaled frequency of events eroding a dune of rescaled height
ξ. For simplicity, we keep the rescaled time as t .

Integrating Eq. 3 over ξ and using the normalization condition∫ 1

0
f (ξ, t)dξ= 1, we get the boundary condition at ξ= 0,

ρ+(0)f (0, t) =

∫ 1

0

λ+(ξ)f (ξ, t)dξ≡λ+(t), [4]

which states that the probability density of having no dunes
f (0, t) equals the ratio of the expected overwash frequency λ+

and the maximum dune growth rate ρ+(0) = 1.

Control Parameters. The evolution of the probability density func-
tion f (ξ, t) is completely characterized by two dimensionless
parameters: the rescaled mean size (intensity) of HWEs, ξc =
S̄/(rH ), also representing the rescaled height of a dune eroded
by the average HWE (S̄ ), and the rescaled frequency λ+

0 =λ0Td

representing the ratio between the characteristic dune formation
time Td and the average time 1/λ0 between HWEs. Global mea-
surements of HWEs (3) suggest both S̄ and λ0 (in the range
0.2 to 0.4 m and 1 to 2 mo−1, respectively) change little with
wave and tidal conditions. Therefore, the control parameters
ξc ∝H−1 and λ+

0 ∝Td can be interpreted as proxies for dune
size (H ) and formation time (Td ). Note that dune size depends
on plant zonation and thus on the stress of the plant ecosys-
tem anchoring dune formation (1), whereas dune formation time
depends on the wind regime and the availability of dry sand
(1). Both quantities can thus be affected by sea level rise as the
water table becomes shallower and the stress on salt-intolerant
vegetation increases.

Solution, Interpretation, and Derived Quantities
Transient Solution. Eq. 3 is solved using the method of charac-
teristics, where the curve ξ∗(t) = 1− e−t divides the (ξ, t) plane
into two regions mapping either to the initial condition f (ξ, 0) for
ξ≥ ξ∗(t) or to the boundary condition f (0, t) for ξ < ξ∗(t). Here
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Fig. 2. Color plots of the temporal evolution of the PDF (f(ξ, t)) of rescaled barrier elevation ξ after an overwash (Eqs. 7 and 8) for different rescaled HWE
frequencies λ+

0 =λ0Td (columns) and rescaled mean HWE intensities ξc = S̄/(rH) (rows) (values shown on top and left, respectively). Solid lines show the
expected values ξ̄(t). The regions of the parameter space corresponding to a high, low, and mixed (bimodal PDF) barrier are highlighted. Arrows on bottom
and right show the effects of changing maximum dune size (H), dune growth time (Td), and frequency (λ0) and intensity (i.e., mean size S̄) of HWEs.

we focus on initial conditions of the form f (ξ, 0) = δ(ξ− ξ0), rep-
resenting the outcome of an overwash (ξ0 = 0; Fig. 2) or dune
restoration project (ξ0> 0).

The transient PDF for ξ≥ ξ∗(t) is the probability density of
the initial elevation ξ= ξ0 not being eroded while following the
deterministic growth curve ξ(t) = 1− (1− ξ0)e−t :

f (ξ, t) = p(t , ξ0) δ(ξ− ξ(t)), [5]

where p(t , ξ0) = e−
∫ t
0 λ

+(ξ(t))dt represents the probability of not
having an overwash before time t . Using the definition dξ=
ρ+(ξ)dt , this probability can be written as

p(t , ξ0) =φ(ξ(t))/φ(ξ0), [6]

with the auxiliary function φ(ξ) defined in Materials and Methods.
For ξ < ξ∗(t), the transient PDF depends on the values f (0, t)

at the boundary ξ= 0 and has the form

f (ξ, t) = f (0, t − t ′(ξ))φ(ξ)/ρ+(ξ), [7]

where t ′(ξ) =− ln (1− ξ). The values f (0, t) are obtained from
the normalization condition

∫ 1

0
f (ξ, t)dξ= 1, leading to the

integral equation∫ t

0

φ(ξ∗(t ′))f (0, t − t ′)dt ′= 1− p(t , ξ0). [8]

Steady-State Solution. Taking ∂f /∂t = 0 in Eq. 3, we arrive at the
steady-state solution f∞:

f∞(ξ) =

(∫ 1

0

φ(ξ)

ρ+(ξ)
dξ

)
−1 φ(ξ)

ρ+(ξ)
. [9]

This solution has a minimum at ξmin = ξc lnλ+
0 and therefore

is strictly bimodal for 0<ξmin< 1. For ξmin≤ 0 (i.e., λ+
0 ≤ 1)

f∞ has a single high-elevation mode (at ξ= 1), whereas for
ξmin≥ 1 (i.e., λ+

0 ≥ e1/ξc ) there is a single low-elevation mode
(at ξ= 0).
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Intermodal Transition Times and Barrier Elevation Regimes. In the
parameter subset where the steady-state PDF exhibits bimodality
(0<ξmin< 1), the mean excursion time T l below the mini-
mum of the steady state (ξmin) provides an indication of the
timescale associated with bimodal switching, from the low- to the
high-elevation mode.

Following ref. 8, T l is calculated as the ratio of the frac-
tion of time the system spends below ξmin, given by the
cumulative distribution P∞(ξmin) =

∫ ξmin

0
f∞(ξ′)dξ′, and the

mean rate ν(ξmin) of up-crossings of the level ξmin, ν(ξmin) =

ρ+(ξmin)f∞(ξmin). Substituting Eq. 9 into the definition of T l

gives

T l =
1

φ(ξmin)

∫ ξmin

0

φ(ξ′)

ρ+(ξ′)
dξ′. [10]

Outside the bimodal region, T l ≡ 0 when f∞ has a single high-
elevation mode (ξmin≤ 0 for λ+

0 ≤ 1), and T l→∞ when f∞ has
a single low-elevation mode (ξmin≥ 1 for λ+

0 ≥ e1/ξc ).
The behavior of T l suggests three distinct regimes for the

dynamics of barrier elevation, what we call a “high,” a “low,” and
a “mixed” barrier (Figs. 2 and 3). In the cases where T l� 1,
the process of modal switching is long relative to the explicit
timescales of the dynamics, namely TD = 1 (by definition of the
rescaling) and 1/λ+

0 < 1, and the barrier remains low elevation
and prone to overwashes (“low barrier”). For T l� 1, the oppo-
site is true; modal switching is fast and the barrier tends to be
high elevation most of the time (“high barrier”). Finally, for
intermediate timescales (T l ∼ 1 to 10) both modes are relevant
and the barrier remains in a mixed (bimodal) state alternating
between high and low elevations (“mixed barrier”; Fig. 2). Note
that these regimes include the transient dynamics and do not nec-
essarily correspond to the modal properties of the steady-state
solution.

Fig. 3. Contour lines of the mean excursion time T l within the low-
elevation mode, also identified as the mean after-storm recovery time,
rescaled by the dune formation time Td , as a function of the two control
parameters. Regions corresponding to resilient high barriers (T l . 1), vul-
nerable low barriers (T l & 10), and mixed (bimodal) barriers are highlighted.
The white region corresponds to λ+

0 ≥ e1/ξc where T l→∞ and thus dunes
never recover. Arrows show the effects of dune and HWEs characteristics on
the control parameters (see Fig. 2 for more details).

After-Storm Recovery Time and Tipping Point in Barrier Response.
The mean excursion time T l within the low-elevation mode can
also be interpreted as the mean after-storm dune (or barrier)
recovery time. Therefore, the intermodal transition time pro-
vides a characterization of the resiliency of the barrier under
a combination of external and intrinsic conditions described
by the control parameters (Fig. 3). For T l . 1, barrier eleva-
tion recovers quickly after an overwash and can be classified
as resilient, whereas for T l & 10 recovery takes much longer
as a now vulnerable barrier experiences frequent overwashes.
The faster-than-exponential increase of the recovery time in this
region (Fig. 3) can be interpreted as the crossing of a tipping
point in barrier response.

The characteristics of the tipping point can be derived analyti-
cally for ξc� 1. In that case, the exponential integral Ei(1/ξc)

in Eq. 17 can be approximated by ξce(1/ξc), leading to T l ∝
eλ

+
0 ξcβ(ξc), where β is a weak function of ξc . In a first approxi-

mation, the tipping point in barrier response, roughly defined by
the boundary T l ∼ 10 limiting resilient barriers, is thus given by
a constant value of the product of the two control parameters:
ξcλ

+
0 (Fig. 3).

The emergence of strongly time-separated modes (T l� 1)
above the tipping point has important implications for the sys-
tem. It may inform approaches to remediation and management,
in which circumstance it would be useful to know how high a
dune needs to be to be likely to persist, but it also presents a
quandary: The observation window in time necessary to resolve
the predicted distribution may be impractically long. Rather, spa-
tial statistics must serve as a proxy, as highlighted in Discussion
and Conclusions.

Average Overwash Frequency and Transport Rate. In addition to
describing the natural variability of barrier elevation, the tran-
sient PDF f (ξ, t) also defines the expected overwash frequency
at time t : λ+(t) = f (0, t) (Eq. 4). This allows the calculation of
the average overwash frequency 〈λ+〉T during a time interval T
after an overwash as 〈λ+〉T = 1

T

∫ T

0
λ+(t)dt = 1

T

∫ T

0
f (0, t)dt ,

which provides information about the role the intermittent pres-
ence or absence of dunes can play in promoting long-term barrier
habitat resilience.

The average overwash frequency also quantifies the exchange
of sediments between the beach and the back barrier leading to
the landward migration of barriers. Indeed, as shown in Materials
and Methods, the expected value of the transport rate QS (t) per
HWE can be approximated as QS (t) =Q0λ+(t)/λ+

0 with scaling
term Q0. Thus, the average transport rate 〈Q〉T during a time
interval T after an overwash is

〈Q〉T =Q0〈λ+〉T/λ+
0 [11]

and the cumulative transport rate resulting from all HWEs λ+
0 T

is simply 〈Q〉Tλ+
0 T =Q0〈λ+〉TT .

Overwash Probability during Dune Recovery and Effects of Potential
Interventions. A final metric to study the vulnerability of dune
recovery and the effectiveness of potential interventions is the
probability pe(t , ξ0) of an overwash taking place before a time t
for a dune of initial elevation ξ0:

pe(t , ξ0) = 1− p(t , ξ0) = 1−φ(ξ(t))/φ(ξ0), [12]

where p is the probability of no erosion (Eq. 6) and ξ(t) =
1− (1− ξ0)e−t is the deterministic growth of the initial con-
dition ξ(0) = ξ0. Defining the dune recovery height as ξr =
1− e−1, the relevant probability to evaluate the vulnerabil-
ity of a dune of size ξ0 is the probability per = pe(tr , ξ0) of
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an overwash occurring before the dune recovers, where tr =
1 + ln (1− ξ0) is the deterministic recovery time satisfying the
condition ξ(tr ) = ξr .

As expected, per increases with both control parameters, λ+
0

and ξc , in response to more intense and frequent HWEs and/or
smaller and slowly growing dunes (Fig. 4A). Furthermore, per
decreases with the size (ξ0) of initial dunes (Fig. 4B). Interpreting
initial dune size as the degree of intervention in the system, per
thus provides a measure of its effectiveness to minimize dune
overtopping and overwash.

For ξc� 1 and ξ0� 1, per can be approximated by an
exponential saturation of the form

per ≈ 1− exp
(
−λ+

0 ξce
−ξ0/ξcγ(ξc , ξ0)

)
, [13]

where γ is a weak function of ξc and ξ0, and we use the approx-
imation Ei(x� 1)≈ ex/x in Eq. 17. The relation λ+

0 ξc ∝ eξ0/ξc

thus describes the lines of constant per in the parameter space
(contour lines in Fig. 4) and provides a good approximation to
constrain the regions of negligible or highly probable overwash.

Discussion and Conclusions
Our results complement those of a previous process-based model
(2) focused on the controls of after-storm vegetation dynam-
ics. Together, they propose two complementing mechanisms for
the slowdown in dune growth (Fig. 1A): first, the slow recov-
ery of vegetation (2), which is required for dune formation

A

B

Fig. 4. (A and B) Contour lines of the probability per of an overwash taking
place before dune recovery, as a function of the control parameters λ+

0 and
ξc for an initial dune size ξ0 = 0 (A) and a function of λ+

0 and the initial
dune size ξ0 for ξc = 0.15 (B). Arrows show the effects of dune and HWEs
characteristics on the control parameters (see Fig. 2 for more details).

and was assumed to depend on wind-driven sand accretion in
the absence of plants (2), and second, direct water-driven ero-
sion of small vegetated dunes (proto-dune), which we find can
lead to a low-elevation barrier even for fast vegetation dynam-
ics and is the focus of the present study. These two studies
thus explore different aspects of a more general parameter
space involving biophysical interactions. However, by charac-
terizing the conditions leading to a low-elevation mode during
fast vegetation growth, we provide a sufficient condition for
the existence of a low-elevation barrier. Indeed, a slower veg-
etation recovery will only increase the dominance of the low-
elevation mode.

Furthermore, the stochastic dynamics of dune growth given
here, and the probabilistic characterizations thence derived,
relate to a single point, as stated at the outset. The observa-
tional quantity corresponding to this model would be a time
series of heights for a dune that is (piecewise) homogeneous
in the y direction. In particular, the predicted steady-state dis-
tribution should be compared with the empirical distribution
function of such a time series with a suitably large number
of sample points. This comparison would allow for parame-
ter estimation or model validation. However, as was previously
cautioned, a dune in the mixed regime presents a nontrivial
distribution structure and potentially takes a very long time to
explore its state space if the modes are well separated, so that
the observational series needed to resolve it would be very long
indeed. Somehow, the longitudinal distribution of dune heights
must be made to serve instead. This will be the topic of a
forthcoming paper.

In summary, here we developed and solved a master equa-
tion describing the temporal evolution of the PDF of barrier
elevation, represented by the height of its coastal dune. We
find, consistent with earlier work (2), that barriers can be low
elevation, high elevation, or mixed (bimodal PDF), depending
on two control parameters that characterize the competition
between vertical accretional and erosional processes in terms
of the ratio of the temporal and spatial scales of HWEs and
coastal dunes. The transient PDF and derived quantities such
as intermodal transition times or after-storm recovery times,
average overwash frequency, and overwash probability before
dune recovery provide a quantitative description of barrier state
and its resilience/vulnerability. These quantities can be used
to evaluate important and varied aspects of barrier response
such as the rate of barrier migration due to overwash-related
sand transport, the effectiveness of dune protection in reduc-
ing back-barrier flooding, and the effects of potential inter-
ventions to accelerate after-storm recovery. Furthermore, this
model allows the study of coastal remediation strategies using
the initial condition to parameterize single interventions or mod-
ifying the effects of erosional events to account for multiple
interventions. Our analytical results open the door to simpli-
fied mean-field models of barrier and barrier systems includ-
ing dune–beach interactions and the coupled barrier–marsh–
lagoon system.

Materials and Methods
Derivation of the Master Equation. The probability density fE(∆h, h) of a
dune h being either completely eroded (∆h = h) or not eroded at all
(∆h = 0) after a HWE is given by

fE(∆h, h) = δ(∆h)
∫ rh

0

e
− S

S̄

S̄
dS + δ(h−∆h)

∫ ∞
rh

e
− S

S̄

S̄
dS

= δ(∆h)
(

1− e
− rh

S̄

)
+ δ(h−∆h)e

− rh
S̄ , [14]

where δ(.) is the Dirac delta distribution and we used the exponential
distribution of the size S of HWEs, with mean S̄.
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Similarly to the stochastic soil moisture dynamics at a point (4), Eq. 2 can
be written as a Chapman–Kolmogorov forward equation for the evolution
of the PDF of barrier elevation f(h, t):

∂f

∂t
=−

∂

∂h
[ρ(h)f(h, t)]−λ0f(h, t)

+ λ0

∫ ∞
h

f(h′, t)fE(h′− h, h′)dh′. [15]

Substituting fE (Eq. 14) and integrating leads to Eq. 3.

Definition of the Auxiliary Function φ(ξ). The function φ(ξ) is defined as

φ(ξ) = e
−
∫ ξ
0
λ+ (ξ′ )
ρ+ (ξ′)

dξ′
[16]

and can be written in terms of the exponential integral Ei(x) =

−
∫∞
−x x−1e−xdx as

φ(ξ) = exp
[
−λ+

0 e
− 1
ξc

(
Ei

(
1

ξc

)
− Ei

(
1− ξ
ξc

))]
. [17]

Average Transport Rate due to Overwashes. Following energy considera-
tions (2), the transport rate QS during a single overwash (S> rh) scales as

QS = (S− h)2/T , where T is a scale parameter with dimension of time. The
expected value of QS per HWE is obtained by integrating over all possible
overwashes:

QS(t) =

∫ H

0

f(h/H, t)

H

∫ ∞
rh

QS(S, h)
e
− S

S̄

S̄
dS

dh. [18]

Substituting QS, introducing new variables η= (S− h)/S̄ and ξ= h/H, and
using r = 1 give

QS(t) =
S̄2

T

(∫ ∞
0

η
2e−ηdη

)∫ 1

0
e−ξ/ξc f(ξ, t)dξ [19]

=
Q0

λ+
0

∫ 1

0
λ

+(ξ)f(ξ, t)dξ= Q0
λ+(t)

λ+
0

, [20]

where we used the definition λ+(ξ) =λ+
0 e−ξ/ξc and define Q0 =

S̄2
T

(∫∞
0 η2e−ηdη

)
.
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